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1. Definition of Category

Category theory is a way to classify and compare abstract objects that naturally
occur in mathematics. Each category specified what are the allowed morphisms,
which one may think of as arrows between the objects. We will focus on concrete
categories, where the objects are sets and the morphisms are functions. We begin
by stating the formal definition of category.

Definition 1. A category C consists of:

• a class of objects ObjC;
• for any pair of objects A,B ∈ ObjC, a set of morphisms MorC(A,B) from
A to B, such that MorC(A,B) ∩MorC(C,D) 6= ∅⇒ A = C and B = D;
• for any three objects A,B,C ∈ ObjC, a law of composition

◦ : MorC(B,C)×MorC(A,B)→ MorC(A,C)

which is associative, that is, if f ∈ MorC(A,B), g ∈ MorC(B,C), and
h ∈ MorC(C,D), then (h ◦ g) ◦ f = h ◦ (g ◦ f);
• for each A ∈ ObjC, a morphism idA ∈ MorC(A,A) satisfying

(a) if f ∈ MorC(B,A), then idA ◦ f = f ;
(b) if g ∈ MorC(A,B), then g ◦ idA = g.

A category is called concrete if the objects are sets and the morphisms are func-
tions between the sets.

To identify a concrete category, one first identifies the objects. These will be sets
with some sort of additional structure; the type of structure is what distinguishes
the category. For example, a partial order, or a binary operation, would be consid-
ered additional structure. Then one identifies which functions between the objects
will be said to “preserve the structure”. There are choices to be made here; often
there is more than one valuable choice, in which case, one may define more than
one category with the same class of objects, but with differing morphisms.

One should be aware that for concrete categories, the third axiom of the definition
is automatically satisfied, since function composition always exists and is always
associative. The fourth axiom requires that the identity map on the underlying set
of an object is considered to be a morphism.
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2. Common Categories

We list some common concrete categories.

Objects Morphisms

Sets Functions
Posets Order preserving maps
Equisets Partition preserving maps
Graphs Edge preserving maps
Groups Group homomorphisms
Abelian Groups Group homomorphisms
Rings Ring homomorphisms
Fields Ring homomorphisms
Vector Spaces Linear Transformations
Metric Spaces Continuous functions
Metric Spaces Isometries
Topological Spaces Continuous functions
Measure Spaces Measurable Functions
Probability Spaces Measurable Functions

3. Subcategories

Definition 2. Let C and D be categories. We say that D is a subcategory of C if

• ObjD ⊂ ObjC;
• MorD(A,B) ⊂ MorC(A,B) for every A,B ∈ ObjD;
• the laws of composition in D are the same as those of C whenever applicable.

A subcategory is wide if it contains all of the parent category’s objects.
A subcategory is full if it contains all of the parent category’s morphisms, for

the objects that are in the subcategory.

A subcategory is given by specifying its objects and its morphisms. However,
a full subcategory is determined by the objects in it, and a wide subcategory is
determined by the morphisms in it.

We have listed multiple examples of subcategories. The category of abelian
groups is a full subcategory of the category of groups. The category of fields is
a full subcategory of the category of rings. The category of metric spaces with
continuous functions is a full subcategory of the category of topological spaces.
The category of metric spaces with isometries is a wide subcategory of the category
of metric spaces with continuous functions.
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4. Functors

Just as set theory makes the formal study of functions possible, so category
theory makes the formal study of functors possible. A functor is like of morphism
between categories. Functors play a crucial role is algebraic topology and algebraic
geometry, and are useful is areas of mathematics from analysis to probability to
computer science. For the sake of completeness and reference, we give the definition
of functor here, but we will only refer to this in passing for a while.

Definition 3. Let C and D be categories.
A covariant functor F from C to D is an assignment of every object in C to

an object in D, and an assignment of every morphism f : A → B, where A,B ∈
Obj(C), to a morphism F (f) : F (A)→ F (B), such that

(1) f(idA) = idF (A);
(2) F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor G from C to D is an assignment of every object in
C to an object in D, and an assignment of every morphism f : A → B, where
A,B ∈ Obj(C), to a morphism G(f) : G(B)→ G(A), such that

(1) f(idA) = idG(A);
(2) G(g ◦ f) = G(f) ◦G(g).

5. Isomorphisms, Endomorphisms, and Automorphisms

Category theory allows us to come up with a consistent collection of jargon which
may be used in multiple contexts. The first example of this relates to classifying
morphisms.

Definition 4. Let C be a category and let A,B ∈ ObjC.
The notation f : A→ B means that f ∈ Mor(A,B).

A morphism f : A→ B is an isomorphism if there exists a morphism g : B → A
such that g ◦ f = idA and f ◦ g = idB . In this case, we say that f is invertible and
write f−1 for g. The set of isomorphisms from A to B is denoted Iso(A,B).

An endomorphism is a morphism from an object to itself. The set of endomor-
phisms of A is denoted End(A).

An automorphism is an isomorphism from an object to itself. The set of auto-
morphisms of A is denoted Aut(A).

Let C be a category and let A ∈ ObjC. Then End(A) is a monoid under compo-
sition; the set of invertible elements of End(A) is Aut(A), which is a group under
composition.

Proposition 1. Let C be a category and let A,B ∈ ObjC. Suppose that f : A→ B
is an isomorphism. Then

Iso(A,B) = {g ◦ f ∈ Mor(A,B) | g ∈ Aut(B)}.

Proof. Call the set on the right hand side Z.
Let h ∈ Iso(A,B). Then h ◦ f−1 is an automorphism of B, with inverse f ◦ h−1.

Let g = h ◦ f−1. Then g ◦ f = h, so h ∈ Z.
Let h ∈ Z. Then h = g ◦ f for some g ∈ Aut(B). Then h is an isomorphism,

with inverse f−1 ◦ g−1. �
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